#include <stdio.h> #define ROWS 3 #define COLS 3 void matrixMultiply(int *mat1, int *mat2, int *result, int rows1, int cols1, int cols2) { int i, j, k; // Multiplying matrices for (i = 0; i < rows1; i++) { for (j = 0; j < cols2; j++) { *(result + i * cols2 + j) = 0; for (k = 0; k < cols1; k++) { *(result + i * cols2 + j) += *(mat1 + i * cols1 + k) * *(mat2 + k * cols2 + j); } } } } void displayMatrix(int *mat, int rows, int cols) { int i, j; // Displaying matrix for (i = 0; i < rows; i++) { for (j = 0; j < cols; j++) { printf("%d\t", *(mat + i * cols + j)); } printf("\n"); } } int main() { int mat1[ROWS][COLS] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; int mat2[ROWS][COLS] = {{9, 8, 7}, {6, 5, 4}, {
Before going to write the c program to check whether the number is Armstrong or not, let's understand what is Armstrong number. Armstrong number is a number that is equal to the sum of cubes of its digits . For example 0, 1, 153, 370, 371 and 407 are the Armstrong numbers. Let's try to understand why 153 is an Armstrong number. 153 = (1*1*1)+(5*5*5)+(3*3*3) where: (1*1*1)=1 (5*5*5)=125 (3*3*3)=27 So: 1+125+27=153 Example of second no 371 = (3*3*3)+(7*7*7)+(1*1*1) where: (3*3*3)=27 (7*7*7)=343 (1*1*1)=1 So: 27+343+1=371 This program computes all Armstrong numbers in the range of ! 0 and 999. An Armstrong number is a number such that the sum ! of its digits raised to the third power is equal to the number ! itself. For example, 371 is an Armstrong number, since ! 3**3 + 7**3 + 1**3 = 371. #include<stdio.h> #include<conio.h> int main(void){ int a,a2,a3,a4,b,b2,b3,c,i,j; printf("Enter any number :"); scanf("%d&quo